77 research outputs found

    Identification of early molecular markers for breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ductal carcinoma <it>in situ </it>(DCIS) of the mammary gland represents an early, pre-invasive stage in the development of invasive breast carcinoma. Since DCIS is a curable disease, it would be highly desirable to identify molecular markers that allow early detection. Mice transgenic for the WAP-SV40 early genome region were used as a model for DCIS development. Gene expression profiling was carried out on DCIS-bearing mice and control animals. Additionally, a set of human DCIS and invasive mammary tumors were analyzed in a similar fashion. Enhanced expression of these marker genes in human and murine samples was validated by quantitative RT-PCR. Besides, marker gene expression was also validated by immunohistochemistry of human samples. Furthermore <it>in silico </it>analyses using an online microarray database were performed.</p> <p>Results</p> <p>In DCIS-mice seven genes were identified that were significantly up-regulated in DCIS: DEPDC1, NUSAP1, EXO1, RRM2, FOXM1, MUC1 and SPP1. A similar up-regulation of homologues of the murine genes was observed in human DCIS samples. Enhanced expression of these genes in DCIS and IDC (invasive ductal carcinoma) was validated by quantitative RT-PCR and immunohistochemistry.</p> <p>Conclusions</p> <p>By comparing murine markers for the ductal carcinoma <it>in situ </it>(DCIS) of the mammary gland with genes up-regulated in human DCIS-samples we were able to identify a set of genes which might allow early detection of DCIS and invasive carcinomas in the future. The similarities between gene expression in DCIS and invasive carcinomas in our data suggest that the early detection and treatment of DCIS is of utmost relevance for the survival of patients who are at high risk of developing breast carcinomas.</p

    Disruption of LTBP-4 function reduces TGF-β activation and enhances BMP-4 signaling in the lung

    Get PDF
    Disruption of latent TGF-β binding protein (LTBP)–4 expression in the mouse leads to abnormal lung development and colorectal cancer. Lung fibroblasts from these mice produced decreased amounts of active TGF-β, whereas secretion of latent TGF-β was significantly increased. Expression and secretion of TGF-β2 and -β3 increased considerably. These results suggested that TGF-β activation but not secretion would be severely impaired in LTBP-4 −/− fibroblasts. Microarrays revealed increased expression of bone morphogenic protein (BMP)–4 and decreased expression of its inhibitor gremlin. This finding was accompanied by enhanced expression of BMP-4 target genes, inhibitors of differentiation 1 and 2, and increased deposition of fibronectin-rich extracellular matrix. Accordingly, increased expression of BMP-4 and decreased expression of gremlin were observed in mouse lung. Transfection of LTBP-4 rescued the −/− fibroblast phenotype, while LTBP-1 was inefficient. Treatment with active TGF-β1 rescued BMP-4 and gremlin expression to wild-type levels. Our results indicate that the lack of LTBP-4–mediated targeting and activation of TGF-β1 leads to enhanced BMP-4 signaling in mouse lung

    Ltbp4 regulates Pdgfr beta expression via TGF beta-dependent modulation of Nrf2 transcription factor function

    Get PDF
    Latent transforming growth factor beta binding protein 4 (LTBP4) belongs to the fibrillin/LTBP family of proteins and plays an important role as a structural component of extracellular matrix (ECM) and local regulator of TGF beta signaling. We have previously reported that Ltbp4S knock out mice (Ltbp4S-/-) develop centrilobular emphysema reminiscent of late stage COPD, which could be partially rescued by inactivating the antioxidant protein Sestrin 2 (Sesn2). More recent studies showed that Sesn2 knock out mice upregulate Pdgfr beta-controlled alveolar maintenance programs that protect against cigarette smoke induced pulmonary emphysema. Based on this, we hypothesized that the emphysema of Ltbp4S-/- mice is primarily caused by defective Pdgfr beta signaling. Here we show that LTBP4 induces Pdgfr beta signaling by inhibiting the antioxidant Nr12/Keap1 pathway in a TGF beta-dependent manner. Overall, our data identified Ltbp4 as a major player in lung remodeling and injury repair. (C) 2016 The Authors. Published by Elsevier B.V.Peer reviewe

    Radiofrequency Electromagnetic Fields Cause Non-Temperature-Induced Physical and Biological Effects in Cancer Cells

    Get PDF
    Non-temperature-induced effects of radiofrequency electromagnetic fields (RF) have been controversial for decades. Here, we established measurement techniques to prove their existence by investigating energy deposition in tumor cells under RF exposure and upon adding amplitude modulation (AM) (AMRF). Using a preclinical device LabEHY-200 with a novel in vitro applicator, we analyzed the power deposition and system parameters for five human colorectal cancer cell lines and measured the apoptosis rates in vitro and tumor growth inhibition in vivo in comparison to water bath heating. We showed enhanced anticancer effects of RF and AMRF in vitro and in vivo and verified the non-temperature-induced origin of the effects. Furthermore, apoptotic enhancement by AM was correlated with cell membrane stiffness. Our findings not only provide a strategy to significantly enhance non-temperature-induced anticancer cell effects in vitro and in vivo but also provide a perspective for a potentially more effective tumor therapy

    Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    Get PDF
    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S(-/-)), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S(-/-) and Ltbp4-null (Ltbp4(-/-)) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.Peer reviewe

    Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    Get PDF
    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S(-/-)), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S(-/-) and Ltbp4-null (Ltbp4(-/-)) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.Peer reviewe
    corecore